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ABSTRACT 

In light of recent advancements in generative AI models, it has become essential to 
distinguish genuine content from AI-generated one to prevent the malicious usage 
of fake materials as authentic ones and vice versa. Various techniques have been 
introduced for identifying AI-generated images, with watermarking emerging as 
a promising approach. In this paper, we analyze the robustness of various AI-
image detectors including watermarking and classifer-based deepfake detectors. 
For watermarking methods that introduce subtle image perturbations (i.e., low per-
turbation budget methods), we reveal a fundamental trade-off between the evasion 
error rate (i.e., the fraction of watermarked images detected as non-watermarked 
ones) and the spoofng error rate (i.e., the fraction of non-watermarked images de-
tected as watermarked ones) upon an application of diffusion purifcation attack. 
To validate our theoretical fndings, we also provide empirical evidence demon-
strating that diffusion purifcation effectively removes low perturbation budget 
watermarks by applying minimal changes to images. For high perturbation wa-
termarking methods where notable changes are applied to images, the diffusion 
purifcation attack is not effective. In this case, we develop a model substitution 
adversarial attack that can successfully remove watermarks. Moreover, we show 
that watermarking methods are vulnerable to spoofng attacks where the attacker 
aims to have real images (potentially obscene) identifed as watermarked ones, 
damaging the reputation of the developers. In particular, by just having black-box 
access to the watermarking method, we show that one can generate a watermarked 
noise image, which can be added to the real images, leading to their incorrect 
classifcation as watermarked. Finally, we extend our theory to characterize a fun-
damental trade-off between the robustness and reliability of classifer-based deep 
fake detectors and demonstrate it through experiments. 

INTRODUCTION 

As generative AI systems advance in sophistication and accessibility, the production of persuasive 
fabricated digital content becomes more accessible. These systems have the ability to craft hyper-
realistic media forms such as images, videos, and audio (referred to as deepfakes), capable of deceiv-
ing viewers and listeners (Helmus, 2022). This misapplication of AI introduces potential hazards 
related to misinformation, fraud, and even national security issues like election manipulation (Blauth 
et al., 2022; Chesney & Citron, 2019). Moreover, deepfakes can result in personal harm, spanning 
from character defamation to emotional distress, impacting both individuals and broader society 
(Ice, 2019). Consequently, the identifcation of AI-generated content and, importantly, tracing its 
sources, emerges as a crucial challenge to address. 

Over the years, numerous techniques for recognizing AI-generated images have emerged. Among 
these, Image watermarking stands out as a promising approach (Honsinger, 2002; Swanson et al., 
1998). Watermarking techniques, along with their many other applications (Potdar et al., 2005; Zhao 
et al., 2023c; Cui et al., 2023), can be integrated with image generation models (Rombach et al., 
2022) to inject watermarks to AI-generated images, which enables them to be differentiated from 
real images later. These techniques also allow for tracing the source of generation for images. Given 
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Figure 1: Illustration of our attacks against image watermarking methods. Upper panel demon-
strates the diffusion purifcation attack for low perturbation budget (imperceptible) watermarks. It 
adds Gaussian noise to images, creating an indistinguishable region, which results in a certifed 
lower bound on the error of watermark detectors. Noisy images are then denoised using diffusion 
models. See Section 3.1 for the defnition of the used terms (e.g., R, F). Lower panel depicts 
our model substitute adversarial attack against high-perturbation budget watermarks. Our attack in-
volves training a substitute classifer, conducting a PGD attack on the substitute model, and using 
these manipulated images to deceive the black-box watermark detector. 

the continuous enhancement in deepfake image quality and the growing challenge of distinguishing 
them from real ones, the adoption of image watermarking over classifer-based detection techniques 
is becoming a more sensible choice. 

In this paper, we demonstrate a fundamental constraint on the robustness of image watermarking 
methods. We leverage a technique called diffusion purifcation (Nie et al., 2022), originally proposed 
as a defense against adversarial examples. This approach involves the introduction of Gaussian noise 
to images and utilizing the denoising process of diffusion models (Ho et al., 2020) to eliminate the 
added noise. We offer both theoretical and empirical evidence that this attack amplifes the error 
rates of watermarking methods that have a low Wasserstein distance between the distributions of 
their watermarked and non-watermarked images, which we refer to as “low perturbation budget” 
watermarking methods; i.e., watermarks with subtle image perturbations. 

To elaborate, if R and F represent the distributions of non-watermarked and watermarked images, 
and Rt and F t denote the distributions of these images after the application of the diffusion purif-
cation attack, we demonstrate that: 

√ 
ᾱ  t W(R, F) 

e0(F t, D) + e1(Rt, D) ≥ 1 − erf( p ), 
2 2(1 − ᾱ  t) 

where e0 and e1 correspond to the evasion (type I) and spoofng (type II) errors of detector D (i.e., 
formally defned in Defnition 1), W(., .) stands for the Wasserstein distance function, erf(.) is the 
Gauss error function, and ᾱ  t represents the cumulative alpha of the diffusion model at step t. To 
complete our theoretical fndings, we empirically show that diffusion purifcation attack can reduce 
the AUROC (Area Under the Receiver Operating Characteristic) of some existing low-perturbation 
watermarks (Zhang et al., 2019c; Cox et al., 2007; Zhao et al., 2023b) to values less than 0.65 by 
applying minimal changes to images. 

If the Wasserstein distance between the distributions of watermarked and non-watermarked images 
is large (i.e., high perturbation budget watermarking), our theoretical bound based on diffusion pu-
rifcation attack becomes vacuous. In fact, we also empirically observe that this attack does not 
compromise existing high perturbation budget watermarking methods where notable changes are 
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applied to the images such as TreeRing (Wen et al., 2023) (Figure 4). In this regime, we develop 
a method that trains a substitute classifer capable of distinguishing between watermarked and non-
watermarked images. Subsequently, we execute an adversarial attack (Madry et al., 2017) on images 
using this substitute classifer. Intriguingly, these attacks appear to transfer successfully to the au-
thentic watermark detector. Our adversarial attack manages to decrease the AUROC of the TreeRing 
method to 0.14 by employing an ℓ∞ attack with ϵ = 2/255. A distinguishing feature of our attack, 
in contrast to previously proposed white-box and black-box attacks (Jiang et al., 2023), is that it does 
not necessitate real-time access to the watermark detector. Instead, it operates by collecting images 
watermarked by a specifc watermark model from the internet. 

We note that some watermarking methods such as StegaStamp (Tancik et al., 2020) impose large 
perturbations in the latent (feature) space but relatively smaller perturbations in the image space 
(Table 1). We show that both the diffusion purifcation attack (in the image space) as well as our 
model substitution adversarial attack are successful in breaking the StegaStamp watermark, espe-
cially using larger diffusion steps or adversarial perturbation budgets. 

In addition to the previously mentioned attacks, we introduce a spoofng attack designed to target the 
spoofng error in watermarking methods. These attacks have the potential to erroneously categorize 
explicit or inappropriate content as watermarked, which could have adverse implications for the 
developers associated with a watermarked generative model, including loss of trust, fnancial loss, 
and negative publicity. Our attack functions by instructing watermarking models to watermark a 
white noise image and then blending this noisy watermarked image with non-watermarked ones to 
deceive the detector into fagging them as watermarked. 

Finally, we extend our theory originally established for watermarking methods, to offer a corre-
sponding theoretical insight for classifer-based AI-image detectors. Our analysis demonstrates a 
fundamental trade-off between the robustness and reliability of these detectors. As the distributions 
of real and fake images grow more alike, this trade-off becomes more pronounced. This implies that 
a detector could only achieve good performance or high robustness, but not both, simultaneously. 
We further present empirical evidence for this trade-off on some real-world detectors. 

Summary of Contributions. In this paper, we make the following contributions: 

1. We characterize a fundamental trade-off between evasion and spoofng error rates of image 
watermarking upon the application of a diffusion purifcation attack. Empirically, we show 
that diffusion purifcation attack can break a whole range of watermarking methods that 
introduce subtle image perturbations (i.e., low perturbation budget image watermarking). 

2. For high perturbation image watermarking that leaves notable changes on the original im-
ages, we show that the diffusion purifcation attack is not effective. Instead, we develop a 
model substitution adversarial attack that can successfully remove the watermarks. 

3. We introduce a spoofng attack against watermarking by adding a watermarked noise image 
to clean images, in order to deceive the detector into fagging them as watermarked. 

4. We develop a fundamental trade-off between the robustness and reliability of deepfake 
detectors and substantiate this concept through experiments. 

PRIOR WORK 

Image Watermarking. Image watermarking is a versatile technology with applications in copyright 
protection, content authenticity, data authentication, privacy preservation, and branding. Its evolu-
tion began with manual methods like LSB (Wolfgang & Delp, 1996), and later techniques involved 
altering spatial or frequency domains (Ghazanfari et al., 2011; Holub & Fridrich, 2012; Pevnỳ et al., 
2010; Boland et al., 1995; Cox et al., 1996; O’Ruanaidh & Pun, 1997). Various transformations 
such as DCT, DWT, SVD-decomposition (Chang et al., 2005), and Radon transformations (Seo 
et al., 2004) were explored. Recent advancements incorporate deep learning and generative models 
like SteganoGAN (Zhang et al., 2019a), StegaStamp (Tancik et al., 2020) RivaGAN (Zhang et al., 
2019c), WatermarkDM (Zhao et al., 2023b), MBRS (Jia et al., 2021), and Tree Ring (Wen et al., 
2023), each employing different methods to embed watermarks into images. 

There have been several works trying to attack watermarking methods (Jiang et al., 2023; Wang 
et al., 2022a). Notably a recent concurrent work (Zhao et al., 2023a) also proves that the diffusion 
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Figure 2: Lower bound on the sum of eva- Figure 3: ROC curves for empirical robustness 
sion and spoofng errors of image watermarks of image watermark methods against diffusion 
against diffusion purifcation attack from The- purifcation attack with t = 0.2. The dashed 
orem 1. The beta schedule for the diffusion lines show the ROC curves of methods without 
model is linear in the range [0.0008, 0.0120]. attacking them. 

purifcation attack is successful against invisible (low perturbation budget) watermarking. However, 
(Zhao et al., 2023a) is unable to attack high perturbation budget watermarking methods such as Tree 
Ring or StegaStamp and argues that they are more reliable watermarking alternatives. In contrast, 
we show that our model substitution adversarial attack can effectively break those watermarking 
methods. Additionally, we show that several watermarking approaches are vulnerable to spoofng 
attacks and characterize a robustness-reliability trade-off for a classifcation-based deepfake detector. 

Classifer-based Detectors. Several machine-learning approaches focusing on detecting artifacts 
in AI-generated content have been studied. For instance, Matern et al. (2019) target irregularities 
in face editing algorithms, while Ciftci & Demir (2019) exploit biological signals. Li et al. (2020) 
introduce a technique for identifying partially manipulated videos, and Guarnera et al. (2020) har-
ness the traces from convolutional layers of generative adversarial networks in fake image detection. 
Bonomi et al. (2021) analyze spatiotemporal texture dynamics of video signals for Deepfake detec-
tion. A plethora of works focus on facial forgery or Deepfake detection using convolution net-based 
classifers (Cozzolino et al., 2017; Bayar & Stamm, 2016; Rahmouni et al., 2017; Raja et al., 2017; 
Zhou et al., 2017; Dogoulis et al., 2023). Rössler et al. (2019) proposed a face forensics dataset and 
train ResNet (He et al., 2015) and XceptionNet (Chollet, 2016) based classifers using it. However, 
as noted in Haliassos et al. (2021), machine learning-based detectors are often vulnerable to novel in-
put perturbations. Such limitations challenge the practical utility of these methods, as any real-world 
detector should achieve good performance while being robust to small perturbations in the input. 

3 ROBUSTNESS OF IMAGE WATERMARKING FOR AI-IMAGE DETECTION 

In this section, we frst present our theoretical results on fundamental constraints for watermarking 
methods followed by our practical attacks. Proofs are presented in Appendix B. 

3.1 FUNDAMENTAL CONSTRAINTS FOR WATERMARKING METHODS 

Consider F to represent the distribution of images that have been watermarked using a particular 
key string k, while R represents the distribution of non-watermarked images. 
Defnition 1 (Evasion and Spoofng Errors). Consider a watermark detector D that predicts values 
of 0 and 1, for non-watermarked and watermarked images, respectively. We defne evasion error 
(e0) and spoofng error (e1) of D on distributions R and F as follows: 

e0(F , D) = Px∼F [D(x) = 0] and e1(R, D) = Px∼R[D(x) = 1] (1) 

We measure distance between the distributions R and F using the Wasserstein metric defned as:� � 
W(R, F) = inf E(x1 ,x2)∼γ ∥x1 − x2∥ , (2) 

γ∈Γ(R,F) 

where Γ(R, F) is the set of all joint probability distributions of R and F . 
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Defnition 2. (Diffusion Purifcation) Diffusion purifcation using a denoising diffusion probabilistic 
model consists of two steps. In the frst step, an image x0 is received and xt is calculated as: 

√ 
xt ∼ N ( ᾱ tx0, (1 − ᾱ t)I), 

where ᾱ t is an increasing function of t that spans from 1 to 0 as t progresses from 0 to 1. Afterward, 
outxt is denoised using a denoising model to output an image x . The denoising model is trained to 0 

out outminimize ∥x − x0∥. We represent diffusion purifcation as DPt(.) where x ∼ DPt(x0).0 0 

This technique was previously used in some other applications. For instance, in a prior study (Nie 
et al., 2022), it was employed to eliminate adversarial perturbations from images as a defense strat-
egy against adversarial attacks. In the following theorem, we claim that applying diffusion purifca-
tion on images establishes a lower bound on the sum of evasion and spoofng errors of watermark 
detectors. Luo (2022) presents comprehensive details on denoising diffusion models and their asso-
ciated parameters, including ᾱ t. 

outLet Rt be the distribution of x ∼ DPt(x0) where x0 ∼ R. Similarly, defne F t . Below, we0 
provide a lower bound on the detector’s error after performing diffusion purifcation on R and F . 

Theorem 1. The sum of evasion and spoofng errors of a watermark detector D on distributions Rt 

and F t is lower bounded as follows: 
√ 
ᾱ  t W(R, F) 

e0(F t, D) + e1(Rt, D) ≥ 1 − erf( p ), 
2 2(1 − ᾱ  t) 

where erf(.) is the Gauss error function, and the Wasserstein distance is measured w.r.t the ℓ2 norm. 

In Appendix A.2, we elaborate on how this theorem can be extended to apply diffusion purifcation 
in the latent space rather than the pixel space. Theorem 1 implies that when the Wasserstein distance 
between the watermarked and non-watermarked distributions is low (either in pixel or latent spaces), 
i.e., watermarking with a low perturbation budget, diffusion purifcation is effective in compromising 
the watermark. The lower bound presented in Theorem 1, employing real-world confgurations of a 
practical diffusion model, is illustrated in Figure 2, demonstrating the applicability of the theoretical 
fndings in practical scenarios (i.e., the value of error lower bound is considerable, for real-world 
values of Wasserstein distance). 

We note that, even though Theorem 1 is stated w.r.t. using diffusion models as the method to 
denoise images after adding Gaussian noise to them, our theoretical bound can be attained with any 
arbitrary denoising technique (Elad et al., 2023; Wang et al., 2022b) (refer to Appendix B for more 
information). A stronger denoising technique permits the use of a higher magnitude of Gaussian 
noise, resulting in a more signifcant lower bound on the error according to Theorem 1. 

In the next section, we provide empirical evidence supporting our theoretical result. 

3.2 LOW PERTURBATION BUDGET WATERMARKS: EMPIRICAL ATTACKS 

We frst categorize certain established watermarking methods into two groups: “low” and “high” 
perturbation budget watermarks. This categorization relies on the image space ℓ2 distance between 
corresponding watermarked and non-watermarked samples for these methods, as detailed in Table 1. 
We opt for the ℓ2 distance as a surrogate for the actual Wasserstein distance, as it offers an upper 
bound on the Wasserstein distance, and computing the exact Wasserstein distance is expensive. 

In this section, we leverage Theorem 1 to attack watermarking techniques with low perturbation 
budgets (i.e., known as imperceptible or invisible watermarks in prior work) utilizing the diffusion 
purifcation attack as outlined in Defnition 2. We will discuss attacks on “high” perturbation budget 
watermarks in the next subsection. 

We use 64-bit binary keys for watermarking techniques. Our evaluation is conducted on a set of 
100 images drawn from the ImageNet dataset (Russakovsky et al., 2015), and their watermarked 
counterparts using each method. For the WatermarkDM method, which necessitates pre-training of 
its models, we undertake training of the injector and detector models for 20 epochs on the ImageNet 
dataset. Watermark detectors, when given an input image and an encryption key, produce a con-
fdence score that corresponds to the likelihood of the image being watermarked with that specifc 
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Figure 6: Illustrations of images subjected to the image diffusion purifcation attack and our ad-
versarial model substitution attack. The s value represents the confdence score assigned by the 
watermark detector to the images where a higher score indicates a greater likelihood of the image 
being watermarked. These attacks are able to signifcantly reduce the AUROC of the detectors (de-
tails can be found in Figures 3 and Figure 5.) 

key. Subsequently, these images are categorized as watermarked if the confdence score exceeds a 
predefned threshold, which may either be a constant value or a threshold that varies. In our exper-
iments, we specifcally adopt a variable threshold for the process of watermark detection, and use 
AUROC (Area Under the Receiver Operating Characteristic) measure as our evaluation metric. 

The diffusion purifcation attack, as defned in Defnition 2, involves a two-step process: adding 
noise to images and then denoising them using a denoising model. In a diffusion model with N 
steps, a diffusion purifcation attack with parameter t ∈ [0, 1] on image x0 creates a noisy image √ 
xt ∼ N ( ᾱ tx0, (1−ᾱ t)I) and denoises it with a trained neural network over N ×t steps. Based on 
Theorem 1, the diffusion purifcation attack is expected to lower the performance of watermarking 
methods, particularly when there is a low Wasserstein distance between the distributions of water-
marked and non-watermarked images. 

We make use of the image diffusion models presented in Nie et al. (2022), particularly a 256 × 256 
unconditional guided diffusion model designed for ImageNet images. As illustrated in Figure 3, 
it becomes evident that all the examined watermarking methods can be compromised through a 
diffusion purifcation attack with t = 0.2. Additionally, we carry out a latent diffusion purifcation 
attack, the results of which are detailed in Appendix A.2. Choosing a higher value of t results in 
a better attack success rate, however, it might degrade the quality of the generated images. Some 
examples of attacked images using different values of t are shown in Figure 6, and the quality 
of output images is measured in Table 2 using image quality metric. The diffusion purifcation 
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method lowers AUROC by reducing the detector’s confdence in watermarked images and does not 
consistently boost the confdence of non-watermarked ones. This is understandable as the space of 
watermarked images is typically much smaller than non-watermarked images due to the key string 
size. Since diffusion purifcation is a no-box attack, it cannot apply specifc watermark patterns to 
non-watermarked images without prior knowledge of methods or key strings. 

3.3 HIGH PERTURBATION BUDGET WATERMARKS: EMPIRICAL ATTACKS 

For the watermarking methods that impose high perturbations to the inputs (i.e., TreeRing (Wen 
et al., 2023) and StegaStamp (Tancik et al., 2020)), our bound in Theorem 1 becomes vacuous 
since the Wasserstein distance between watermarked and non-watermarked distributions becomes 
large. In fact, Figure 4 shows empirical evidence that as the perturbation budget of watermarking 
methods increases, the diffusion purifcation attack becomes less effective, e.g., TreeRing shows 
strong robustness against that. 

The StegaStamp watermarking (Tancik et al., 2020) imposes large perturbations in the feature space. 
While its ℓ2 perturbation in the image space is larger than that of other invisible watermarking meth-
ods (Table 1), it is much smaller than that of the TreeRing. That is partially the reason that the 
diffusion purifcation attack in the image space is relatively successful against StegaStamp, espe-
cially at higher values of t such as 0.3 which might leave some artifacts on images. Nevertheless, 
we categorize StegaStamp as a high perturbation budget watermarking and study additional alterna-
tive attacks against it in this section. 

For the high perturbation budget watermarking schemes, we develop a model substitution adversarial 
attack that can successfully alter the watermark detector’s decision. To do this, we frst train a 
ResNet-18 (He et al., 2015) classifer on the train split to distinguish between watermarked and non-
watermarked images. Then, we target the watermark detector by executing PGD adversarial attacks 
on test split using the substitute classifer that we have trained. Interestingly, this attack transfers 
well to the original watermark detector which we assume we do not have a white box access to. 

Figure 5 displays the AUROC of the methods following adversarial attacks using various adver-
sarial perturbation budgets denoted as ϵ. StegaStamp demonstrates greater resilience to our attack, 
requiring an ϵ value of 12/255 before its performance degrades to the level of a random detector. 
We note that this level of adversarial noise may leave perceptible artifacts on the images. However, 
TreeRing is found to be more vulnerable, as a perturbation budget as low as ϵ = 2/255 can render 
it completely ineffective. Note that the transferability of the adversarial attacks is reliant on the 
substitute classifer’s architecture and training procedure. In our case, we employ a basic ResNet-18 
model with standard training procedures. Opting for a more suitable model confguration may lead 
to a substantial increase in the attack’s success rate on the watermark detector. More details about 
the adversarial attack can be found in Appendix A.3. 
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3.4 SPOOFING ATTACKS ON WATERMARKING METHODS 

An effective watermarking method should minimize both spoofng and evasion errors. High spoof-
ing errors enable adversaries to manipulate natural images, leading to a “spoofng attack”. Such 
attacks can falsely identify obscene images as watermarked, potentially harming the reputation of 
the developers of a watermarked generative model. In this section, we evaluate various watermark-
ing techniques in the presence of adversarial spoofng attempts. 

We use a simple strategy to spoof various watermarking techniques by blending watermarked noisy 
images with clean images (see Algorithm 1). A detailed explanation of the attack is available in 
Appendix A.4. Figure 7 shows examples of spoofed images for various watermarking methods. 
While evaluating the AUROC metric, we also augment the images in our dataset using two differ-
ent techniques: random cropping to 200×200-dimensional images and resizing back to 256×256-
dimensional images, and random rotations between -30 and 30 degrees. Figure 7 shows ROC curves 
for our spoofng attack. As seen here, the AUROC and TPR at low FPR metrics of all the water-
marking methods considered here drop after our spoofng attack. RivaGAN seems to be the most 
robust to our spoofng attack. However, at low FPR regimes, some of the RivaGAN images can be 
spoofed as well. 

4 ROBUSTNESS-RELIABILITY TRADE-OFF OF DEEPFAKE DETECTORS 

A reliable deepfake detector should exhibit the following two properties: (i) Robustness: Minor 
input image perturbations should not infuence performance. (ii) Reliability: The detector should 
accurately identify fake images while minimizing false positives. In this section, we extend the 
techniques used in proving Theorem 1 to show a fundamental trade-off between these two properties. 

Let R and F denote the distributions of real and fake images. Consider a detector D that maps an 
input image x ∈ Rd to a latent representation ϕ(x) ∈ Rl that encodes the perceptual features of 
the image and uses this representation for detection. We defne the robustness of D as its ability 
to correctly classify a noisy version of the image in this latent space. Let N (ϕ(x), σ) denote the 
distribution of noisy versions of the image x in the latent space, where σ is a parameter representing 
the size of the noise distribution. Here, N represents a general noise distribution with size parameter 
σ. For example, N (ϕ(x), σ) could represent an isometric Gaussian distribution with variance σ2 or 
a uniform distribution with width σ centered at ϕ(x). 
Defnition 3 (Robust Detector). We say a detector D is (σ, α)-robust on R and F under noise 
distribution N if, for an image x drawn from either R or F , its prediction is consistent on latent 
representations from N (ϕ(x), σ) with probability at least (1 − α), for some α ≥ 0, i.e., h i 

∀k ∈ {0, 1}, ∀P ∈ {R, F}, P ˜ D(ϕ̃) = k|D(ϕ(x)) = k ≥ 1 − α. (3)x∼P,ϕ∼N (ϕ(x),σ) 

This indicates a robust detector’s prediction should remain largely unchanged for noisy inputs. 

To measure the distance between two distributions R and F we use the Wasserstein metric, follow-
ing a similar formulation as Equation 2. However, here, we defne the distance with respect to a 
norm ∥ · ∥ in the latent space Rl as follows: � � 

W(R, F) = inf E(x1 ,x2)∼γ ∥ϕ(x1) − ϕ(x2)∥ . (4) 
γ∈Γ(R,F) 

Consider two images x1 and x2. Let ψσ(·) denote a concave upper bound on the total variation 
between the corresponding noise distributions N (ϕ(x1), σ) and N (ϕ(x2), σ) as a function of the 
distance ∥ϕ(x1) − ϕ(x2)∥ between the corresponding images in the latent space, i.e., � � � � 

TV N (ϕ(x1), σ), N (ϕ(x2), σ) ≤ ψσ ∥ϕ(x1) − ϕ(x2)∥ . (5) 
Note that a concave upper bound like this always exists for any noise distribution N . This is because 
the total variation between the noise distributions for two images goes from zero to one as the 
distance between them in the latent space increases. Thus, a trivial bound could be obtained by 
simply considering the convex hull of the region under the curve of the total variation with respect 
to the distance. In the case where N is an isometric Gaussian and the distance is measured using the 
ℓ2 norm, this bound takes the form of the Gauss error function, more precisely:� �� � ∥ϕ(x1) − ϕ(x2)∥2

ψσ ∥ϕ(x1) − ϕ(x2)∥2 = erf √ . 
2 2σ 
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of the Wasserstein distance between real R on DeepFakes (deepfakes) and FaceSwap 
and fake F distributions. (MarekKowalski) datasets. 

Theorem 2. A (σ, α)-robust detector’s AUROC is upper bounded as follows: 
�� 1 ψσ(Wϕ(R, F))

2 1+2α − 2α
2 

AUROC(D) ≤ ψσ(Wϕ(R, F)) − + . 
1 − α 2 2(1 − α) 

For example, when the Wasserstein distance is measured using ℓ2 in the latent space and the 
noise is isometric √Gaussian with variance σ

2 , ψσ takes the form of the Gauss error function: 
ψσ(z)= erf(z/(2 2σ). We set α to some small positive value (i.e., α = 1%) and analyze the 
behavior of the bound for different values of σ. Figure 8 shows the behavior of the bound with re-
spect to the robustness parameter σ for different values of the Wasserstein distance while Figure 16 
shows the behavior of the bound with respect to the Wasserstein distance for different values of σ. 
The detection performance bound has a negative relationship with the amount of noise that can be 
tolerated. 

Experiments. We perform experiments on the images from the FaceForensics++ dataset hosted 
by Rössler et al. (2019) to verify our theoretical insights empirically. We use ImageNet pretrained 
ResNet-18 (He et al., 2015) (based on popular DeepFake detectors (Rössler et al., 2019; Dessa, 
2019)) and VGG-16-BN (Simonyan & Zisserman, 2014). More details on dataset preprocessing and 
experiments are provided in Appendix F. We train the models to classify between real and synthetic 
facial images. The initial trained layers of the models arefxed to be the latent representation ϕ given 
in Equation 3. The remaining layers of the models represent detector D. For both ResNet-18 and 
VGG-16-BN, we choose every layer except the last two convolution layer blocks to represent ϕ. De-
tectors with varying robustness to random noise are trained using noisy latent space feature vectors 
output from ϕ. We train different detectors with the standard deviation of noise σ varied from 0 to 

For different detectors, we compute the inference 20. σ on the test dataset at which they achieve an α 
of 0.01 using Equation 3. In Appendix F (Figure 18), we show that the detector’s robustness (infer-
ence σ at α = 1%) to random noise increases as the training sigma increases. We use ten randomly 
sampled Gaussian noises for each sample ϕ(x) for this evaluation. Afterf ve independent trials, we 
plot AUROC vs. σ for various (σ, α =0.01)-robust detectors in Figure 9 using a ResNet-18 back-
bone for the detector (see plot using VGG-16-BN in Figure 17). Our empirical results show that as 
the robustness or σ atfxed α increases, the AUROC or the performance of the detectors drops. 

CONCLUSION 

In this work, we studied the robustness of AI-image detection methods. We proposed diffusion 
purifcation as a certifed attack against low-perturbation watermarks, and a model substitution ad-
versarial attack against high-perturbation watermarks. Furthermore, we showed a fundamental reli-
ability vs. robustness trade-off for classifer-based deepfake detectors. Based on our results, design-
ing a robust watermark is a challenging, but not necessarily impossible task. An effective method 
should possess specifc attributes, including a substantial enough watermark perturbation, resistance 
to naive classifcation, and resilience to noise transferred from other watermarked images. 
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Method Image 
ℓ2 distance 

Latent 
ℓ2 distance 

RivaGAN (Zhang et al., 2019b) 4.19 8.47 
DwtDct (Cox et al., 2007) 5.59 5.47 

DwtDctSvd (Cox et al., 2007) 5.54 6.67 
WatermarkDM (Zhao et al., 2023b) 7.26 13.84 

StegaStamp (Tancik et al., 2020) 17.40 118.17 
TreeRing (Wen et al., 2023) 117.58 52.81 

Table 1: Average ℓ2 distance between corresponding watermarked and non-watermarked images for 
each method. The latent representations were obtained using a VQGAN model (Esser et al., 2021), 
commonly used for latent diffusion models. We consider the frst four methods as low perturbation, 
and the last two as high perturbation ones. 
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Figure 10: ROC curves for watermarking methods against diffusion purifcation attack with different 
values of t. 

A COMPLEMENTARY RESULTS FOR WATERMARKING METHODS 

A.1 DIFFUSION PURIFICATION ATTACK 

Figure 11 showcases images that have undergone the diffusion purifcation attack with varying t 
values, while Figure 10 displays ROC curves for watermarked techniques under these attacks. In 
the low FPR regime, the TPR of all methods declines at some value of t. Table 2 numerically 
measures the quality of watermarked images that are attacked using diffusion purifcation w.r.t. the 
non-attacked images. The quality of images is measured using image quality metrics such as PSNR 
(Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index Measure). 

Note that the quality of images for the TreeRing watermark depends on the captions that are pro-
vided for the images, and in our case, we are using simple captions based on ImageNet classes. 
Therefore, the images watermarked by TreeRing might exhibit dissimilarity compared to their non-
watermarked counterparts. However, this does not infuence the results when attacking the TreeRing 
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Original DwtDct DwtDctSVD RivaGAN WatermarkDM StegaStamp TreeRing

Original DwtDct DwtDctSVD RivaGAN WatermarkDM StegaStamp TreeRing

Figure 11: Watermarked images subjected to the image diffusion purifcation attack are shown with 
varying values of the parameter t. For t = 0.3, the attack may excessively alter images, making it 
unsuitable for some applications. 
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Method PSNR SSIM 

t = 0.1 t = 0.2 t = 0.3 t = 0.1 t = 0.2 t = 0.3 

RivaGAN 29.77 26.10 23.61 0.83 0.72 0.63 
DwtDct 29.64 26.03 23.70 0.83 0.72 0.63 

DwtDctSvd 29.69 26.08 23.60 0.83 0.72 0.63 
WatermarkDM 30.33 26.41 23.87 0.86 0.75 0.66 

MBRS 29.96 26.23 23.76 0.83 0.73 0.64 
StegaStamp 30.35 26.52 24.08 0.84 0.73 0.64 

TreeRing 32.45 28.27 25.49 0.92 0.86 0.81 

Table 2: Analysis of the quality of images after being attacked using diffusion purifcation. 

0.0 0.1 0.2 0.3 0.4 0.5
Diffusion Purification Step (t)

0.5

0.6

0.7

0.8

0.9

1.0

A
U

R
O

C

TreeRing

StegaStamp

WatermarkDM

RivaGan

DwtDctSvd

DwtDct

Figure 12: AUROC of watermarking meth-
ods against latent diffusion purifcation at-
tack w.r.t the value of t. 
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Figure 13: ROC curves for attacking wa-
termarked and non-watermarked images 
that are generated with text from LAION-
captions with the TreeRing method. 

watermark. Nevertheless, in Fig 13, we demonstrate that our adversarial attacks on TreeRing also 
extend successfully to captions from LAION-captions data. 

A.2 LATENT DIFFUSION PURIFICATION ATTACK 

A similar bound from Theorem 1 can be proven for latent diffusion models. The diffusion process 
for a latent diffusion model consists of: mapping x0 to the latent space, i.e., z0 = ϕ(x0); calculating 
out out outz ∼ DPt(z0) using a latent diffusion model; and mapping z back to image space, i.e., x = 0 0 0 

outϕ−1(z ). In this case, since the noise is applied to latent space ϕ, the Wasserstein distance in 0 
Theorem 1 will be replaced by the Wasserstein distance of the latent distributions, i.e., W(Rϕ, Fϕ) 
with Rϕ being the distribution of images z0 = ϕ(x0) where x0 ∼ R, and Fϕ defned similarly. 

In practice, we perform latent diffusion purifcation attack by employing a Text-Guided Image-
to-Image Stable Diffusion model (Rombach et al., 2022), and using BLIP model (Li et al., 2022) 
to generate image captions, as guidance for diffusion models. Figure 12 includes the AUROC of 
watermarking methods against this attack, and Figure 14 contains samples output images for this 
attack. 

A.3 ADVERSARIAL ATTACK 

We conduct adversarial attacks involving model substitution on high-perturbation budget water-
marks, specifcally StegaStamp and TreeRing. Our training dataset comprises 7, 500 watermarked 
and 7, 500 non-watermarked images. For StegaStamp, we use images sourced from ImageNet, along 
with their watermarked versions, for both training and testing. In contrast, for TreeRing, the non-
watermarked images can either be sourced from ImageNet or generated using a process similar to 
TreeRing’s watermarking method, but employing random noise instead of TreeRing’s key string. 
We have observed through empirical testing that the effectiveness of our adversarial attack remains 
consistent, regardless of the choice between these two types of non-watermarked training data. As a 
result, we opted for the latter approach. 
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Original DwtDct DwtDctSVD RivaGAN WatermarkDM StegaStamp TreeRing

Figure 14: Watermarked Images subjected to the latent diffusion purifcation attack are shown with 
varying values of the parameter t. For t = 0.5, the attack drastically changes the images in most 
cases (except for TreeRing). 
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Watermarked

TreeRing

StegaStamp

Perturbation Pattern

Figure 15: Watermarked images subjected to the model substitution adversarial attack are shown 
with varying values of adversarial perturbation budget ϵ. Attacks on images watermarked with the 
same method show similar perturbation patterns. 

For StegaStamp, we employ 100-bit binary keys, mirroring the key length described in their report. 
In the case of TreeRing, we stick to the ring-type key employed in the original implementation. 
TreeRing necessitates captions for generating watermark images, and for our ImageNet data, we 
utilize captions structured as “a photo of a ⟨imagenet-class⟩.” Nevertheless, in Figure 13, we demon-
strate that our attacks on TreeRing also extend successfully to LAION-captions data (Schuhmann 
et al., 2021). 

Our substitute classifers are trained for 10 epochs and receive higher than 99.8% accuracy on val-
idation data. For StegaStamp, we observed that augmenting the training data with Gaussian noise 
improves the transferability of the attacks on the watermark detector. 

To launch adversarial attacks on images using substitute classifers, we employ a PGD attack with 
300 iterations and a step size denoted as α = 0.05ϵ. Our observations indicate that adversarial per-
turbations for a particular watermarking method exhibit a roughly consistent pattern. Consequently, 
we initiate our adversarial attacks on each image from the perturbation discovered for the previous 
image, a technique akin to the one employed in Shafahi et al. (2019). To ensure the accurate identi-
fcation of the perturbation pattern, we execute a series of preliminary warm-up attacks at the outset. 
Some sample adversarial images can be seen in Figure 15. 

In Figure 13, we present ROC curves for attacking TreeRing images that are generated with text 
from LAION-captions data (Schuhmann et al., 2021). This shows that our adversarial attack which 
is performed on the classifer trained on ImageNet data, generalizes to any images watermarked 
using the TreeRing method. 

A.4 SPOOFING 

To perform the spoofng attack, we frst generate random noisy images where pixels are drawn from 
different Gaussian distributions with varying standard deviations. The noisy images are normalized 
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Method Base Blur (k = 5) JPEG DiffPure (t = 0.2) 

RivaGAN 
t = 0.1 
t = 0.2 
t = 0.3 

0.655 
0.623 
0.579 

0.692 
0.607 
0.568 

0.679 
0.604 
0.562 

0.638 
0.593 
0.555 

DwtDct 
t = 0.1 
t = 0.2 
t = 0.3 

0.548 
0.542 
0.539 

0.546 
0.540 
0.538 

0.544 
0.539 
0.538 

0.542 
0.539 
0.537 

DwtDctSvd 
t = 0.1 
t = 0.2 
t = 0.3 

0.560 
0.564 
0.555 

0.566 
0.560 
0.553 

0.567 
0.561 
0.551 

0.567 
0.558 
0.549 

WatermarkDM 
t = 0.1 
t = 0.2 
t = 0.3 

0.876 
0.644 
0.568 

0.885 
0.630 
0.604 

0.805 
0.604 
0.565 

0.597 
0.518 
0.564 

MBRS 
t = 0.1 
t = 0.2 
t = 0.3 

0.914 
0.614 
0.536 

0.828 
0.636 
0.493 

0.874 
0.634 
0.444 

0.597 
0.545 
0.547 

StegaStamp 
t = 0.1 
t = 0.2 
t = 0.3 

1.000 
0.966 
0.781 

1.000 
0.960 
0.802 

0.998 
0.971 
0.767 

0.920 
0.832 
0.659 

TreeRing 
t = 0.1 
t = 0.2 
t = 0.3 

0.996 
0.976 
0.928 

0.989 
0.956 
0.907 

0.947 
0.923 
0.871 

0.935 
0.912 
0.876 

Table 3: The AUROC of watermarking methods against diffusion purifcation attack, after applying 
post-attack mitigations to the attacked images. 

to have values between 0 and 1. For every watermarking method that we evaluate, we apply their 
watermarks on these noisy images to obtain corresponding watermarked noisy images. 

We use an input prompt, “a noisy image”, along with the noisy images to generate noisy water-
marked TreeRing (Wen et al., 2023) images. Once we obtain the watermarked noisy images, we 
do a mixup (or image blending) by adding noisy images to the clean images to spoof them. We 
observe that the watermark signatures in the noisy images help detect the resulting blended images 
as watermarked. 

We provide the pseudocode for spoofng watermarks in Algorithm 1. 

Algorithm 1 Watermark Spoofng 

Require: clean image x, watermarking model W , mixup parameter α 
z = random(x.shape) ▷ generate random noise with shape of image x 
z = z − z.min() ▷ normalize z 
z = z/z.max() 
z = αW(z) ▷ watermark the noise; for TreeRing, condition with text “a noisy image” 
γ = 1 − z.max() 
x = γx/x.max() ▷ z + x can now only have a value of maximum 1 
return x + z ▷ spoofed image 

A.5 ROBUSTNESS OF ATTACKS AGAINST MITIGATIONS 

In this section, we measure the robustness of the diffusion purifcation and the model substitution 
adversarial attacks on image watermarking techniques. This robustness is measured by applying 
post-attack mitigations such as Gaussian Blur and JPEG Compression to the attacked images. A 
robust attack is expected to result in a low AUROC on the watermark detector, even after the post-
attack mitigations are applied. 
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Method Base Blur (k = 5) Blur (k = 15) JPEG DiffPure (t = 0.2) 

StegaStamp 
ϵ = 4 
ϵ = 8 
ϵ = 12 

1.000 
0.923 
0.492 

1.000 
0.838 
0.424 

0.999 
0.791 
0.341 

0.991 
0.864 
0.496 

0.879 
0.703 
0.566 

TreeRing 
ϵ = 4 
ϵ = 8 
ϵ = 12 

0.035 
0.002 
0.001 

0.025 
0.001 

0.0002 

0.023 
0.001 

0.0002 

0.046 
0.006 
0.001 

0.891 
0.531 
0.074 

Table 4: The AUROC of watermarking methods against model substitution adversarial attack, after 
applying post-attack mitigations to the attacked images. 

Table 3 showcases the AUROC of watermarking methods against diffusion purifcation attacks, after 
applying post-attack mitigations. The application of post-attack mitigations is not causing signifcant 
increases in the AUROC. This is anticipated since the primary aim of the diffusion purifcation attack 
is the removal of watermarks from the watermarked images (i.e., to achieve a bit-accuracy close to 
0.5 for both watermarked and non-watermarked images). Therefore, it is reasonable to expect that 
basic no-box post-attack mitigations will encounter challenges in recovering the watermark. 

On the other hand, our proposed adversarial attack has black-box information about the watermark, 
and therefore, is able to target both non-watermarked and watermarked images for its attack, in order 
to increase or reduce their watermark bit-accuracy, respectively. Table 4 showcases the AUROC of 
watermarking methods against the adversarial attack, after applying post-attack mitigations. While 
post-attack mitigations, specifcally DiffPure, are able to increase the AUROC in some cases, they 
fail to negate the effect of the attack for higher attack budgets such as ϵ = 8/255. 

B PROOF OF THEOREM 1 

Statement. The sum of evasion and spoofng errors of a watermark detector D on distributions Rt 

and F t is lower bounded as follows: 
√ 
ᾱ  t W(R, F) 

e0(F t, D) + e1(Rt, D) ≥ 1 − erf( p ). 
2 2(1 − ᾱ  t) 

Proof. Let ψσ(·) denote a concave upper bound on the total variation between two noise distribu-
tions N (x1, σ) and N (x2, σ) as a function of the distance ∥x1 − x2∥ between the corresponding 
images, i.e., � � � � 

TV N (x1, σ), N (x2, σ) ≤ ψσ ∥x1 − x2∥ , (6) 

where TV is the total variation of two distributions. 

Note that a concave upper bound like this always exists for any noise distribution N . This is be-
cause the total variation of the noise distributions for two images goes from zero to one as the 
distance between them in the latent space increases. Thus a trivial bound could be obtained by sim-
ply considering the convex hull of the region under the curve of the total variation with respect to 
the distance. In the case where N is an isometric Gaussian and the distance is measured using the 
ℓ2-norm, this bound takes the form of the Gauss error function, more precisely: � � 

∥x1 − x2∥ 
ψσ (∥x1 − x2∥) = erf √ (7)

2 2σ 

Now, consider the distribution of images under the noise distribution N . Let RN be the distribution 
of images x̃ ∼ N (x, σ) where x ∼ R. Similarly, defne FN . The same equality as Equation 7 can 
be written for the Wasserstein distance of R and F defned with respect to ℓ2 norm, when x1 and x2 
are sampled from R and F , respectively. � �� � W(R, F)

ψσ W(R, F) = erf √ . (8)
2 2σ 
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We bound the total variation of the noisy distributions RN and FN in terms of the Wasserstein 
distance between the original distributions R and F . The reason why this bound holds is that as R 
and F get closer to each other, RN and FN start to overlap due to the noise distribution N around 
them. 

Lemma 1. The total variation of RN and FN , and hence, the success rate of any detector D 
on these distributions, is upper bounded by a function of the Wasserstein distance of the original 
distributions R and F as follows: � � 

1 − (e0(FN , D) + e1(RN , D)) ≤ TV(RN , FN ) ≤ ψσ W(R, F) . 

Proof. For simplicity of the proof, assume D to be deterministic, however, the proof can be gener-
alized for randomized detectors too. Defne ED = {x : D(x) = 1}. Based on the defnition of total 
variation, 

TV(RN , FN ) = sup Px̃1 ∼RN [x̃1 ∈ E] − Px̃2 ∼FN [x̃2 ∈ E] 
E 

≥ Px̃1∼RN [x̃1 ∈ ED] − Px̃2∼FN [x̃2 ∈ ED]� � 
= e1(RN , D) − 1 − e0(FN , D) (Defnition 1) 

≥ 1 − (e0(FN , D) + e1(RN , D)). � � 
Furthermore, the inequality TV(RN , FN ) ≤ ψσ W(R, F) can be derived from the proof pre-
sented for Lemma 3 in Appendix E, by substituting the latent function ϕ with the identity function. 

In Lemma 1, we have shown that after applying Gaussian noise to R and F , they become more in-
distinguishable. However, using Gaussian noise as an attack against image watermarks will degrade 
the quality of images. Therefore, we utilize denoising diffusion models to remove the added noise. 
Since the bound in Lemma 1 is on total variation, by applying a denoising function on the noisy 
distributions RN and FN , the bound still holds. Note that our theoretical results do not rely on the 
utilization of denoising diffusion models, and any arbitrary denoising technique (Elad et al., 2023; 
Wang et al., 2022b), can be used to achieve similar bounds. 

√ 
Let Rt be the distribution of xt ∼ N ( ᾱ tx0, (1 − ᾱ t)I) where x0 ∼ R, and defne F t similarly. N N 
Additionally, defne Gt(.) as the function that performs denoising process to Rt and F t (i.e.,N N 

outsamples of Rt come from x ∼ Gt(xt) where xt ∼ Rt ).0 N p
We use Lemma 1, to get an upper bound on the total variation of Rt and F t , with σ = (1 − ᾱ  t),N N 
based on the defnition of Rt 

N and FN 
t : � � 

TV(Rt 
N , FN 

t ) ≤ ψσ W(R, F)√ 
ᾱ  t W(R, F) 

= erf( p ). (Equation 8) 
2 2(1 − ᾱ  t) 

Next, we use the fact that after applying the function Gt(.) on samples from Rt and FN 
t , the total N 

variation does not increase, i.e. 

TV(Rt , F t) ≤ TV(Rt 
N , FN 

t ). (9) 

Now, the theorem’s statement can be proven as follows: 
√ 
ᾱ  t W(R, F)

TV(Rt , F t) ≤ TV(Rt 
N , FN 

t ) ≤ erf( p ) 
2 2(1 − ᾱ  t)√ 
ᾱ  t W(R, F)

1 − (e0(F t, D) + e1(Rt, D)) ≤ erf( p ) (Lemma 1) 
2 2(1 − ᾱ  t)√ 

ᾱ  t W(R, F) 
e0(F t, D) + e1(Rt, D) ≥ 1 − erf( p ). 

2 2(1 − ᾱ  t) 
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We note that inequality 9 can be written for any arbitrary denoising function that receives noisy 
images of Rt and F t as inputs, and outputs denoised images with acceptable image quality. N N 

C PROOF OF THEOREM 2 

Statement. The performance of a (σ, α)-robust detector measured using its AUROC is upper 
bounded as follows: � � 

1 ψσ(Wϕ(R, F))2 1 + 2α − 2α2 

AUROC(D) ≤ ψσ(Wϕ(R, F)) − + ,
1 − α 2 2(1 − α) 

Proof. We quantify the dissimilarity between the distributions R and F using the Wasserstein metric 
defned with respect to a norm ∥ · ∥ in the latent space Rl as follows: � � 

Wϕ(R, F) = inf E(x1,x2)∼γ ∥ϕ(x1) − ϕ(x2)∥ , (10) 
γ∈Γ(R,F) 

where Γ(R, F) is the set of all joint probability distributions of R and F , i.e., � Z 
Γ(R, F) = γ : Rd × Rd → R≥0 γ(x1, x2)dx2 = pdfR(x1) 

RdZ � 
and γ(x1, x2)dx1 = pdfF (x2) , 

Rd 

where pdfR and pdfF represent the probability density functions of R and F . For the sake of 
simplicity, we assume that there exists an element γ∗ ∈ Γ that achieves the infmum. Otherwise, 
one can derive our results for some γ∗ that achieves an expected distance of Wϕ(R, F) + δ for an 
arbitrarily small δ > 0. 

We use the notation ψσ (·) to represent a concave upper bound on the total variation between two 
noise distributions, specifcally N (ϕ(x1), σ) and N (ϕ(x2), σ). This upper bound is expressed as a 
function of the distance ∥ϕ(x1) − ϕ(x2)∥ between the respective images in the latent space, i.e., � � � � 

TV N (ϕ(x1), σ), N (ϕ(x2), σ) ≤ ψσ ∥ϕ(x1) − ϕ(x2)∥ . (11) 

In the case where N is an isometric Gaussian and the distance is measured using the ℓ2-norm, this 
bound takes the form of the Gauss error function, more precisely: � �� � ∥ϕ(x1) − ϕ(x2)∥2

ψσ ∥ϕ(x1) − ϕ(x2)∥2 = erf √ . 
2 2σ 

Now, consider the distribution of noisy real images in the latent space under the noise distribution 
N . Let Rϕ be the distribution of latent representations ϕ̃ ∼ N (ϕ(x), σ) where x ∼ R. Similarly, N 

defne FN 
ϕ . The following lemma relates the performance of a (σ, α)-robust detector D under the 

original and noisy versions of the two distributions. 

Lemma 2. The AUROC of a (σ, α)-robust detector D on the original distributions R and F is 
bounded by that for the noisy versions of the distributions Rϕ and Fϕ as follows:N N 

AUROCN (D)
AUROC(D) ≤ + α. 

1 − α 

Proof is available in Appendix D. 

Next, we bound the total variation between the noisy distributions Rϕ and Fϕ in terms of theN N 
Wasserstein distance between the original distributions R and F . The reason why this bound holds 
is that as R and F get closer to each other in the latent space, Rϕ and Fϕ start to overlap due to N N 
the noise distribution N around them. 
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Lemma 3. The total variation between the noisy distributions Rϕ and Fϕ is bounded by theN N 
Wasserstein distance of the original distributions R and F as follows: � � 

TV(Rϕ 
N , F

ϕ ) ≤ ψσ Wϕ(R, F) .N 

Proof is available in Appendix E. 

Now, we use the above two lemmas to put a bound on the performance of the detector on R and F . 
We frst show that the performance on the noisy distributions Rϕ and Fϕ is bounded by the total N N 
variation between these distributions. We then use Lemma 3 to convert this total variation distance 
to the Wasserstein distance between the original distributions R and F . Finally, we relate the bound 
to the detector’s performance on the original distributions using Lemma 2. 

The true positive rate TPRN and the false positive rate FPRN of the detector on the noisy distribu-
tions Rϕ and Fϕ can be bounded by the total variation between these distributions as follows: N N 

|TPRN − FPRN | = |P ˜ [D(ϕ̃) = 1] − P ˜ [D(ϕ̃) = 1]|x∼F,ϕ∼N (ϕ(x),σ) x∼R,ϕ∼N (ϕ(x),σ) 

= TV(Rϕ 
N , F

ϕ )N 

Since the true positive rate is also bounded by one, we have: 

TPRN ≤ min(FPRN + TV(Rϕ 
N , F

ϕ ), 1).N 

Denoting FPRN , TPRN and TV(Rϕ 
N , F

ϕ ) with x, y, and tv, respectively, for brevity, we boundN 
the AUROCN as follows: Z 1 Z 1 

AUROCN (D) = ydx ≤ min(x + tv, 1)dx 
0 Z0 Z1−tv 1 

= (x + tv)dx + dx 
0 1−tv 

1−tv2x 1 
= + tvx + |x|1−tv2 0 

(1 − tv)2 

= + tv(1 − tv) + tv 
2 

1 tv2 2 = + − tv + tv − tv + tv 
2 2 
1 tv2 

= + tv − . 
2 2 

Thus, 

1 TV(Rϕ 
N , F

ϕ )2 
NAUROCN (D) = + TV(Rϕ 

N , F
ϕ ) −N2 � 2 �2 

1 � � ψσ Wϕ(R, F)≤ + ψσ Wϕ(R, F) − . 
2 2 

(from Lemma 3 and since 1/2 + x − x2/2 is increasing in [0, 1]) 

Finally, from Lemma 2, we have: 

AUROCN (D)
AUROC(D) ≤ + α 

1 − α � �2 ! 
1 1 � � ψσ Wϕ(R, F)≤ + ψσ Wϕ(R, F) − + α (from above) 

1 − α 2 2 � � 
1 ψσ (W(R, F))2 1 + 2α − 2α2 

= ψσ(W(R, F)) − + . 
1 − α 2 2(1 − α) 
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D PROOF OF LEMMA 2 

Statement. The AUROC of a (σ, α)-robust detector D on the original distributions R and F is 
bounded by that for the noisy versions of the distributions Rϕ and Fϕ as follows:N N 

AUROCN (D)
AUROC(D) ≤ + α. 

1 − α 

Proof. Let TPR, FPR, TPRN and FPRN denote the true and false positive rates of the detector on 
the original and noisy distributions, respectively, assuming the fake distribution as the positive class. 
Then, by defnition, Z 1 

AUROCN (D) = TPRN dFPRN . 
0 

Now, to relate this to AUROC, we lower bound TPRN and upper bound FPRN in terms of TPR 
and FPR. 

TPRN = P ˜ [D(ϕ̃) = 1]x∼F,ϕ∼N (ϕ(x),σ) 

= P ˜ [D(ϕ̃) = 1|D(ϕ(x)) = 1]Px∼F [D(ϕ(x)) = 1]x∼F,ϕ∼N (ϕ(x),σ) 

+ P ˜ [D(ϕ̃) = 1|D(ϕ(x)) = 0]Px∼F [D(ϕ(x)) = 0]x∼F,ϕ∼N (ϕ(x),σ) 

(law of total probability) 
≥ (1 − α)Px∼F [D(ϕ(x)) = 1] (from Equation 3) 
= (1 − α)TPR. 

FPRN = P ˜ [D(ϕ̃) = 1]x∼R,ϕ∼N (ϕ(x),σ) 

= P ˜ [D(ϕ̃) = 1|D(ϕ(x)) = 1]Px∼R[D(ϕ(x)) = 1]x∼R,ϕ∼N (ϕ(x),σ) 

+ P ˜ [D(ϕ̃) = 1|D(ϕ(x)) = 0]Px∼R[D(ϕ(x)) = 0]x∼R,ϕ∼N (ϕ(x),σ) 

(law of total probability) 
≤ Px∼R[D(ϕ(x)) = 1] 

+ (1 − P ˜ [D(ϕ̃) = 0|D(ϕ(x)) = 0])Px∼R[D(ϕ(x)) = 0]x∼R,ϕ∼N (ϕ(x),σ) 

≤ FPR + αPx∼R[D(ϕ(x)) = 0] (from Equation 3) 
≤ FPR + α. 

Therefore, Z 1 

AUROCN (D) = TPRN dFPRN Z0 
1 

≥ (1 − α)TPR dFPRN (TPRN ≥ (1 − α)TPR) 
0 Z 1 

= (1 − α) TPR dFPRN 
0Z 1−α 

≥ (1 − α) TPR dFPR (FPRN ≤ FPR + α) 
0�Z �1 

≥ (1 − α) TPR dFPR − α 
0 

= (1 − α)(AUROC − α). 

Hence, 
AUROCN (D)

AUROC(D) ≤ + α. 
1 − α 
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Figure 16: Deepfake detection performance Figure 17: AUROC vs. σ plot for a (σ, α = 
bound w.r.t Wasserstein distance between real 0.01)-robust deep fake detector with a VGG-
R and fake F distributions for different values 16-BN backbone on DeepFakes (deepfakes) and 
of σ. A more robust detector (higher σ) has a FaceSwap (MarekKowalski) datasets. Consis-
lower performance. tent with Theorem 2, AUROC drops as the ro-

bustness of the detector increases. 

E PROOF OF LEMMA 3 

Statement. The total variation between the noisy distributions Rϕ and Fϕ is bounded by theN N 
Wasserstein distance of the original distributions R and F as follows: � � 

TV(Rϕ 
N , F

ϕ ) ≤ ψσ Wϕ(R, F) .N 

Proof. By defnition of total variation, we have: 

TV(Rϕ 
N , F

ϕ ) = sup P˜ [ϕ̃ 
1 ∈ E] − P˜ [ϕ̃ 

2 ∈ E]N ϕ1∼Rϕ ϕ2∼Fϕ 
N NE 

= sup P ˜ [ϕ̃ 
1 ∈ E]x1∼R,ϕ1∼N (ϕ(x1),σ)

E 

− P ˜ [ϕ̃ 
2 ∈ E] (defnition of Rϕ and Fϕ )x2∼F,ϕ2∼N (ϕ(x2),σ) N N 

= sup P [ϕ̃ 
1 ∈ E](x1,x2)∼γ∗ ,ϕ̃ 

1∼N (ϕ(x1),σ)
E 

− P ˜ [ϕ̃ 
2 ∈ E] (since γ∗ has marginals R and F)(x1,x2)∼γ∗ ,ϕ2∼N (ϕ(x2),σ)h i 

= sup E(x1,x2)∼γ∗ P˜ [ϕ̃ 
1 ∈ E] − P˜ [ϕ̃ 

2 ∈ E]ϕ1∼N (ϕ(x1),σ) ϕ2∼N (ϕ(x2),σ)
E 

≤ sup E(x1,x2)∼γ∗ P˜ [ϕ̃ 
1 ∈ E] − P˜ [ϕ̃ 

2 ∈ E]ϕ1∼N (ϕ(x1 ),σ) ϕ2∼N (ϕ(x2),σ)
E 

(since |a + b| ≤ |a| + |b|)� � �� 
≤ E(x1,x2)∼γ∗ TV N (ϕ(x1), σ), N (ϕ(x2), σ) (by defnition of total variation) � � �� 
≤ E(x1,x2)∼γ∗ ψσ ∥ϕ(x1) − ϕ(x2)∥ (from Equation 11) � � 
≤ ψσ E(x1,x2)∼γ∗ [∥ϕ(x1) − ϕ(x2)∥] 

(since ψσ is concave and Jensen’s inequality) � � 
= ψσ Wϕ(R, F) . (from defnition of γ∗ and Equation 10) 
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(a) ResNet-18 (b) VGG-16-BN 

Figure 18: Detector robustness (inference σ at α = 1%) to random noise in the ϕ latent space 
increases as the standard deviation of noise used for training increases. Various robust detectors 
are trained by adding Gaussian noise of standard deviation between 0 and 20 to the ϕ latent space. 
Y-axes represent the standard deviation of the noise at inference time on the test dataset for which 
the detector achieves α = 0.01 as per Equation 3. 

F MORE DETAILS ON DEEPFAKE DETECTOR EXPERIMENTS 

Theorem 2 provides a robustness-reliability trade-off for deepfake detectors. Figure 8 shows how 
the AUROC reduces with robustness for different Wasserstein distances based on our bound. Fig-
ure 16 shows how the AUROC reduces with Wasserstein distance for various noise values σ. We 
perform experiments on the FaceForensics++ dataset hosted by Rössler et al. (2019) to empirically 
verify our theoretical insights. FaceForensics++ (Rössler et al., 2019) is a forensic dataset that con-
sists of 1000 video sequences that are manipulated using different automated face manipulation 
techniques1.For our experiments, we use frames from videos that are manipulated using FaceSwap 
(MarekKowalski) and Deepfakes (deepfakes). FaceSwap manipulations are based on classical com-
puter graphics-based methods, while DeepFakes relies on a learning-based approach. We perform a 
set of preprocessing steps to extract aligned 228 × 228 face images from the videos using the Deep-
Fakes software2. We randomly sample 5 frames from each video. We ensure that our fnal image 
datasets have no overlap of identities between the training and test splits. After preprocessing, our 
FaceSwap image dataset contains 4316 (1059, respectively) original and 3529 (1857, respectively) 
manipulated images in the training (test, respectively) dataset. Similarly, our DeepFakes image 
dataset contains 4316 (1059, respectively) original and 3522 (1843, respectively) manipulated im-
ages in the training (test, respectively) dataset. 

We train different detectors with the standard deviation of noise σ varied from 0 to 20 with the 
following objective 

NX1 
min ℓ(D(ϕ(xi) + ni), yi) 
θ N 

i=1 

where ℓ is the cross-entropy loss, ni ∼ N (0, σ2I), and θ represent the parameters that defnes D. 
For different detectors, we compute the inference σ on the test dataset at which they achieve an α 
of 0.01 using Equation 3. Figure 18 shows that the detector robustness (inference σ at α = 1%) 
to random noise increases as the training sigma increases. We use ten randomly sampled Gaussian 
noises for each sample ϕ(x) for this evaluation. Figures 9 and 17 plots the empirical trade-off 
between AUROC and robustness (σ at α = 1%) for detectors with ResNet-18 and VGG-16-BN 
backbones, respectively, on the DeepFakes and FaceSwap datasets. 

1https://github.com/ondyari/FaceForensics/ 
2https://github.com/deepfakes/faceswap 
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Figure 19: W
e use R

esN
et-18 and the FaceSw

ap dataset to visualize im
ages that correspond to 

noisy latent space features. W
e optim

ize E
quation 12 to fnd additive noises in the im

age space that 
cause large ℓ

2
 perturbations in the latent space ϕ. In top row

, w
e show

 the original im
ages from

 the 
FaceSw

ap dataset. T
he rest of the row

s show
 noisy im

ages that produce perturbations corresponding 
ϵ in the latent space. H

ere, w
e show

 that sm
all additive noises in the im

age space can lead to large 
perturbations in the ϕ

 space.

W
e also visualize how

 the noisy latent space vectors w
ould look in the im

age space (see Figure 19). 
W

e optim
ize the follow

ing objective to fnd such im
ages: 

�
�
2

 
m
in 

ϵ −
∥ϕ
(x
) −

 ϕ
(x

 +
 δ)∥

2
 

(12) 
δ

In the above optim
ization problem

, w
e fnd an additive noise δ w

hen added to a clean im
age x

 leads 
to an ℓ

2
 perturbation of ϵ in the latent space. A

s show
n in Figure 19, FaceSw

ap im
ages w

ith sm
all 

perturbations in the input space can cause large perturbations in the latent space ϕ
 of R

esN
et-18. 
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